Vol. 1 No. 01 (2021): BIOTECH & ENGINEERING
Artículos

Caracterización de regiones espacialmente homogéneas de monóxido de carbono en Lima Metropolitana mediante el algoritmo de clustering k-means

BIOTECH & ENGINEERING

Published 2021-01-28

How to Cite

Espinoza Guillen, J. A. ., & Alderete Malpartida, M. B. . (2021). Caracterización de regiones espacialmente homogéneas de monóxido de carbono en Lima Metropolitana mediante el algoritmo de clustering k-means. Revista Científica: BIOTECH AND ENGINEERING, 1(01). https://doi.org/10.52248/eb.Vol1Iss01.4

Abstract

Los análisis estadísticos de series de tiempo o datos espaciales se han utilizado ampliamente para investigar el comportamiento de los contaminantes atmosféricos. Debido a que los datos de contaminación del aire generalmente se recopilan en un área amplia de interés durante un período relativamente largo, dichos análisis deben tener en cuenta tanto las características espaciales como las temporales. El objetivo de este estudio es caracterizar regiones espacialmente homogéneas basadas en patrones temporales de monóxido de carbono en el Área Metropolitana de Lima y Callo (AMLC) utilizando el algoritmo de clustering k-means. Este estudio utilizó concentraciones horarias promedios de CO medidas durante un periodo de 5 años (2015 – 2019) en las diez estaciones de monitoreo que conforman la Red de Monitoreo Automático de la Calidad del Aire (REMCA) del AMLC. Se empleó un algoritmo de clustering (agrupamiento) de k-means utilizando la distancia euclidiana para investigar la similitud en los patrones entre los perfiles temporales observados en los sitios de monitoreo. El análisis de agrupamiento de k-means identificó tres grupos de sitios con patrones temporales distintos que pudieron identificar y caracterizar regiones espacialmente homogéneas en el AMLC.